Implication des gènes Hox dans les processus d'organogenèse chez les mammifères

Josée Aubin
Lucie Jeannotte

Au cours du développement, la famille des facteurs de transcription HOX joue un rôle essentiel dans la détermination de l'identité régionale de l'embryon, en spécifiant le modelage des squelettes axial et appendiculaire. L'analyse de lignées de souris déficientes pour les gènes Hox démontre que ceux-ci sont également impliqués dans d'autres processus d'organogenèse. Ainsi, près du tiers des mutations Hox sont letales, et sauf exception, la mortalité observée n'est pas liée aux transformations squelettiques. Au cours de l'embryogenèse, les gènes Hox sont des acteurs essentiels de la morphogenèse des systèmes respiratoire, digestif et urogénital, de même que des structures glandulaires. Au stade postnatal, les gènes Hox sont impliqués dans le développement du pelage et de la glande mammaire. L'analyse des souris déficientes pour Hoxa5 montre qu'un même gène Hox peut agir dans plusieurs de ces processus en influençant, entre autres, les communications entre les couches cellulaires.

L e développement d'un organisme multicellulaire à partir de l'œuf fécondé est un processus complexe, nécessitant l'expression différentielle de l'information génétique selon un profil spatio-temporel précis. Chez les vertébrés, les facteurs de transcription HOX occupent une position stratégique dans la hiérarchie des processus de développement qui déterminent le devenir des différentes régions de l'organisme. Initialement identifiées chez la drosophile, les protéines HOX contrôlent la formation de structures spécifiques des diverses régions de l'organisme, en modulant l'expression de gènes cibles. Ceux-ci contrôlent à leur tour les événements morphogénétiques menant à l'élaboration de formes complexes [1]. Ainsi, de nombreux travaux réalisés chez la drosophile démontrent que la mutation des gènes homéotiques provoque le changement d'identité des segments. Chez cette espèce, huit gènes homéotiques sont organisés en deux com-
plexes adjacents, Antennapedia et bithorax (figure 1). Il existe une relation de co-linéarité entre la position relative de chaque gène au sein de ces complexes et celle des segments dont ils contrôlent l'identité le long de l'axe antéro-postérieur de la drosophile. En effet, les gènes situés en 3° des complexes sont exprimés dans les segments antérieurs, alors que les gènes localisés en 5° agissent au niveau de segments plus postérieurs. La caractérisation moléculaire des gènes homéotiques a mené à la découverte d'une séquence commune de 183 paires de bases, appelée la boîte homéo [1]. Cette séquence code pour le domaine du même nom, comportant un motif de type hélice-tour-hélice, responsable de la liaison à l'ADN. La présence de gènes contenant une boîte homéo a par la suite été décrite dans le génome d'une grande variété d'espèces, de la levure à l'humain.

Chez l'humain et la souris, 39 gènes Hox (possédant une boîte homéo de classe 1), sont regroupés en quatre complexes (HoxA, B, C et D) situés sur des chromosomes différents (figure 1). Ces différents gènes Hox ont été classés en 13 groupes paralogues, sur la base de la conservation des séquences protéiques correspondantes. Capelli et al. ont d'ailleurs récemment suggéré que les produits des gènes d'un groupe paralogue pourraient être fonctionnellement equivalents [2]. Toujours en raison d'une homologie de séquence, chaque groupe paralogue peut être associé à un gène homéotique orthologue chez la drosophile, démontrant ainsi la conservation de l'organisation des complexes Hox au cours de l'évolution (figure 1) [3]. En outre, la relation existant entre la position d'un gène Hox dans le complexe et la frontière antérieure de son domaine d'expression le long de l'axe antéro-postérieur est conservée chez les mammifères. Cette co-linéarité s'observe aussi sur le plan temporel, puisque les gènes situés à l'extrémité 3° des complexes s'expriment plus tôt. En conséquence, l'organisation des complexes Hox semble fondamentale pour une régulation spatio-temporelle précise de chaque gène Hox lors du développement de l'embryon. Des données récentes démontrent d'ailleurs la mise en commun de séquences régulatrices entre gènes Hox voisins, ainsi que la conservation d'éléments de contrôle transcriptionnel des gènes Hox entre espèces divergentes [4].

La préservation de l'organisation génomique des complexes Hox au cours de l'évolution suggère que la fonction de ces gènes dans le développement serait maintenue chez les mammifères. Ainsi, chez la drosophile, une mutation de type « perte de fonction » d'un gène Hox a généralement pour conséquence la transformation d'un segment en un autre ayant une identité plus antérieure. En revanche, les mutations de type « gain de fonction » entraînent la transformation inverse d'un segment antérieur vers une structure plus postérieure. Ainsi, le gène Hox le plus postérieur, exprimé à un niveau axial donné, serait responsable de la spécification de l'identité segmentaire, selon un phénomène appelé suppression phénotypique [1, 3].

Chez la souris, on retrouve le long des axes embryonnaires et à des moments précis des variations des niveaux et des domaines d'expression des gènes Hox. Ainsi, le profil d'expression combiné des différentes protéines HOX présentes établit un code de développement (ou code Hox), qui contrôle les programmes de spécification régionale responsables des variations morphologiques existant le long des axes [4-6]. Grâce à des approches génétiques (gains ou pertes de fonction) chez la souris, il a été montré que les gènes Hox sont aussi des acteurs essentiels de la spécification de l'identité axiale chez les mammifères. Ainsi, le gain d'expression des gènes Hoxa4, Hoxb6, Hoxc6, Hoxa7, Hoxb7 et Hoxb8, mène le plus souvent à des transformations de type antérieur → postérieur des vertèbres dans les sites d'expression ectopiques [3, 7]. Cependant, lorsque Hoxc8 est placé sous le contrôle des séquences régulatrices du gène Hoxa4, des transformations de type postérieur → antérieur sont observées [8]. L'analyse de souris déficientes pour une fonction hox confirme que la fonction homéotique de ces gènes a été conservée au cours de l'évolution. A ce jour, les expériences de mutation de 34 des 39 gènes Hox ont été réalisées, et les conséquences de l'inactivation de ces gènes Hox sur l'identité axiale ont été décrites pour la plupart d'entre eux [9]. Généralement, des transformations homéotiques de type postérieur → antérieur sont observées chez les mutants. Elles

![Figure 1. Complexes Hox de la drosophile et de la souris. Les gènes Hox de la drosophile sont représentés le long de leurs deux complexes Antennapedia (ANT-C) et bithorax (BX-C) en haut de la figure. Les gènes Hox de souris sont aussi représentés selon leur ordre relatif dans les complexes. Chacun des gènes est placé en fonction de son groupe paralogique avec l'orthologue correspondant chez la drosophile. La relation de co-linéarité entre l'organisation structurale des complexes et l'expression temporelle et antéro-postérieure des gènes est indiquée au bas de la figure par la flèche qui indique également la direction de transcription des gènes Hox.](image)
sont le plus souvent limitées à la région la plus antérieure du domaine d'expression du gène dans la colonne vertébrale, ou encore dans la région où le gène est le plus fortement exprimé (figure 2). De plus, pour certains gènes Hox, la perte de fonction provoque à la fois des transformations de type postérieur à antérieur et inverse, chez un même individu [9, 10]. La position de la limite rostrale d'expression de chaque gène Hox, ainsi que leurs niveaux d'expression, sont des facteurs critiques pour l'établissement de l'identité axiale au cours de l'embryogenèse. L'étude de la fonction des gènes Hox au cours du développement a également révélé leur rôle lors de la formation des membres [11]. L'analyse des lignées de souris déficientes pour les gènes Hox des groupes paralogues 9 à 13 indique des aspects analogues à ceux observés lors de l'analyse des transformations du squelette axial. Ainsi, il existe un lien de colinéarité entre l'organisation génomique des complexes Hox et le domaine d'expression et d'action des gènes Hox dans les membres, les gènes du group 9 agissant dans la partie proximale du membre alors que ceux du groupe 13 sont nécessaires au développement des phalanges. De plus, les gènes des groupes 5 et 6 sont impliqués dans l'élaboration des structures de la ceinture scapulaire [12-14]. L'établissement des frontières d'expression des gènes des groupes 5 à 8 semble indispensable à l'émergence des bourgeons de membres antérieurs. Cette hypothèse est confortée par le fait que la restriction de l'expression des gènes Hoxc6 et Hoxc8 disparaît dans le mésoderme latéral des serpents qui sont des vertébrés sans membres [15]. Chez les vertébrés, la co-clinéarité existant entre l'organisation chromosomique des gènes Hox et leur profil

Figure 2. Transformations homéotiques axiales chez les différentes lignées de souris déficientes pour les gènes Hox. Représentation du profil d'expression de différents gènes Hox dans la colonne prévertébrale, et des conséquences phénotypiques qu'entraîne leur invalidation sur la spécification axiale. Le trait schématisé le domaine d'expression de chaque gène décrit, avec sa limite d'expression dans la colonne prévertébrale et les somites correspondants (se reporter à la figure 1 pour la charte de couleurs). Les transformations homéotiques attribuables à la perte de fonction pour chaque gène sont indiquées par les flèches dirigées vers l'identité que prennent les vertèbres : une flèche vers la gauche indiquant une transformation de type postérieur → antérieur alors qu'une flèche vers la droite indique une transformation de type antérieur → postérieur. Dans les cas de transformations ayant lieu en dehors du domaine d'expression, les flèches sont grises, alors que les malformations ambiguës sont indiquées par des astérisques. Les transformations pour lesquelles les critères morphologiques ne permettent pas d'établir de façon certaine quelles sont les vertèbres touchées sont représentées par des flèches vides (e.g. Hoxd13). Dans le cas des doubles mutants Hoxa3,Hoxd3, la délétion de la vertèbre C1 est indiquée par la boîte. Les lignées déficientes pour les gènes Hox pour lesquelles aucune transformation squelettique axiale n'a été rapportée ne sont pas incluses (groupe paralogues Hox 1, 2, 7 et 12), ni celles dont la mutation cause une interférence transcriptionnelle en position cis sur l'expression de gènes Hox avoisinants.
d’expression n’est pas limitée uniquement à la colonne prévertébrale et aux membres, mais existe également dans le tube neural, la crête neurale, le rhombencéphale, l’ectoderme de surface, les arcs branchiaux, le tube digestif et le système urogénital (figure 3) [3]. Les travaux ciblent essentiellement sur l’étude des transformations squelettiques chez les souris mutantes ont parfois éclipsé l’implication de ces gènes dans d’autres processus d’organogénèse. Or, près du tiers des mutations Hox ont des conséquences dramatiques sur la viabilité des souris. A l’exception de la mutation Hoxd3 pour laquelle la léthalité résulterait d’une dislocation cervicale, et de la mutation Hoxb1, qui provoque la mort par fissure sternale, les transformations squelettiques observées chez les mutants ne peuvent à elles seules expliquer la mortalité observée [9]. Ces observations sont en faveur d’une participation importante des gènes Hox à la formation des organes vitaux. Alors que le rôle des gènes Hox dans la morphogenèse du squelette, du système nerveux et des structures dérivées de la crête neurale fait l’objet d’une littérature abondante, leur implication dans d’autres processus d’organogénèse commence seulement à être abordée. Nous présentons ici un résumé des connaissances concernant le rôle des gènes Hox dans la morphogenèse des organes glandulaires de la région cervico-thoracique, ainsi que dans celle des systèmes respiratoire, digestif et urogénital. Nous porterons une attention particulière aux résultats obtenus de l’analyse de souris déficientes pour le gène Hoxa5 [10, 12, 16, 17].

Gènes Hox et morphogenèse des organes glandulaires de la région cervicothoracique

L’invalidation des gènes des groupes paralogues 1 et 3 révèle la participation de ces derniers à la formation des structures osseuses, cartilagineuses et glandulaires des régions cervicale et thoracique supérieure [9, 18, 19]. Bien que les mutants simples Hoxa1 et Hoxa3 ne présentent pas de dysmorphogenèse des structures du cou, les doubles mutants Hoxa1/ Hoxb1 présentent une agénésie du thymus et des glandes parathyroides. Les souris Hoxa3−/− présentent des anomalies au niveau du système cardiovasculaire, une atrophie de la glande thyroïde ainsi que des malformations des os et des cartilages du cou. Elles sont également dépourvues de thymus et de glandes parathyroides [18]. Les anomalies cardiovasculaires et du larynx seraient responsables de la léthalité chez ces animaux mutants. Le gène Hoxa3 est fortement exprimé dans le mésenchyme du troisième arc branchial, et dans l’endoderme de la troisième et de la quatrième poche pharyngiale, dont dérivent les glandes parathyroides, le thymus et les corps ultimobranchiaux (précursors des cellules C productrices de calcitonine), et dans le plancher du pharynx d’où émerge la glande thyroïde (figure 3). L’atrophie de la glande thyroïde observée chez les mutants Hoxa3−/− s’accompagne d’une déletion ou d’un déplacement de l’isthme thyroïdien qui relève normalement les deux lobes de la glande, ainsi que d’une diminution ou d’une absence de cellules C. La perte de cellules C est liée à une incapacité des corps ultimobranchiaux à migrer, et à fusionner...
avec la thyroïde. Alors que la réduction de taille de la glande thyroïde et l’agénésie du thymus et des glandes parathyroides ne s’observent que chez les souris déficientes pour le gène Hoxa3, l’analyse des animaux mutants Hoxa3/Hoxb3/Hoxd3 révèle que ces gènes agissent en synergie lors de la migration des cellules précurseurs de ces organes [18]. L’action prépondérante du gène Hoxa3 s’explique par le fait que, de ces trois gènes, seul Hoxa3 s’exprime dans l’endoderme des troisième et quatrième poches pharyngiales.

Le développement de la glande thyroïde nécessite également l’expression du gène Hoxa5 (figure 3). Les souris Hoxa5−/− qui survivent après la naissance présentent un développement postnatal retardé, notamment en ce qui concerne l’ouverture des yeux et l’élévation des oreilles. Ces symptômes sont normalement associés à une hypothyroïdie. Au cours du développement de la glande thyroïde, le gène Hoxa5 est exprimé dans le mésenchyme adjacent à la thyroïde. Malgré le fait que les taux circulants de thyroxine soient normaux chez les animaux mutants, on observe chez les embryons Hoxa5−/− une désorganisation des follicules thyroïdiens [17]. Le mécanisme par lequel cette désorganisation conduit à une hypothyroïdie chez les souris Hoxa5−/− demeure inconnu.

Gènes Hox et morphogenèse du système respiratoire

Les gènes Hox des groupes 1 à 6 sont exprimés lors de l’ontogénie du système respiratoire et il a été proposé que ceux des groupes 3 à 6 déterminent le mode d’expression proximodistal selon un ordre correspondant à leur position le long des complexes [20]. L’altération de la morphogenèse du larynx chez les souris déficientes pour les gènes Hoxa3 et Hoxa5 est d’ailleurs en faveur de cette hypothèse ; Hoxa3 participe à la formation des cartilages thyroïdien et cricoïdien, alors que Hoxa5 est nécessaire à la formation du cartilage cricoïdien situé en position plus postérieure [16, 18]. Ces deux gènes possèdent donc des fonctions distinctes et complémentaires dans la morphogenèse du larynx. De plus, le gène Hoxa5 est essentiel à la formation de la trachée et du poumon. Cependant, l’analyse des autres mutants Hox des groupes paralogues 1 à 6 ne confirme pas l’existence d’un lien de co-linearité entre la localisation chromatique des gènes Hox et la spécification régionale pulmonaire [16, 19]. La redondance fonctionnelle pourrait expliquer l’absence de phénomène pulmonaire apparent chez les mutants des gènes appartenant aux groupes 1 à 6. À l’appui de cette hypothèse, la double mutation des gènes Hoxa1 et Hoxb1 entraîne le développement de poumons plus petits, le nombre de lobes étant parfois réduit sans que la structure du tissu pulmonaire en soit altérée [19]. Cependant, chez les animaux mutants combinés pour les gènes des groupes paralogues 3 et 4, l’absence de mortalité attribuable à une détresse respiratoire suggère que ces derniers ne participent pas à la morphogenèse du poumon ou n’ont pas d’action prépondérante. La mutation du gène Hoxa5 est la seule décrite à ce jour pour laquelle la mortalité périnatale est liée à une anoxie, mais cette mutation affecte la formation des centres de contrôle respiratoire dans le tronc cérébral [21]. En fait, seule la mutation du gène Hoxa5 entraîne chez la majorité d’individus une mortalité périnatale causée par la dysmorphogenèse des voies respiratoires. Cette anomalie n’est pas observée chez les mutants Hoxb5 ou Hox5, le domaine d’expression de ces gènes paralogues étant par ailleurs plus limité dans cet organe. Il semble donc que le gène Hoxa5 exerce un rôle prédominant dans la morphogenèse de la trachée et du poumon.

Tous les animaux déficients pour le gène Hoxa5−/− présentent une malformation sévère des voies respiratoires [16]. L’aspect anormal du larynx, le rétrécissement de la trachée et la désorganisation des anneau traqueux s’accompagnent de la présence d’un épithélium dont la structure est très désorganisée et d’une déficience fonctionnelle des poumons à la naissance. L’ensemble de ces anomalies est à l’origine de la détresse respiratoire des nouveaux-nés Hoxa5−/−, et résulte d’une dysmorphogenèse des voies respiratoires chez ces mutants. Il y a en effet réduction de la formation de l’arbre bronchial au stade pseudoglandulaire vers le jour embryonnaire 15,5. En outre, chez les animaux adultes Hoxa5−/−, la périphérie des poumons présente des poches d’air caractéristiques de défaits de septation suggérant que la fonction Hoxa5 est également requise pour l’intégrité fonctionnelle du poumon adulte (figure 4). Des modifications dans les niveaux d’expression de plusieurs gènes impliqués dans la morphogenèse et/ou la fonction pulmonaire ont été mises en évidence au jour embryonnaire 12,5 : l’expression des gènes TTF-1 et Hnf5β est diminuée, alors que celle du gène N-myc augmente. L’expression de ces gènes est limitée à l’épithélium, alors que celle de Hoxa5 durant la morphogenèse du système respiratoire est strictement mésenchymateuse, appuyant l’hypothèse selon laquelle Hoxa5 serait un modulateur des interactions épithéliomésenchymateuses dans le poumon. Des données récentes sont en faveur de cette notion puisque l’expression de gènes codant pour des molécules de signalisation, tel que TGFβ1, est altérée par le déséquilibre du gène Hoxa5.

Gènes Hox et morphogenèse du tube digestif

Chez la drosophile, les gènes Hox sont exprimés dans le mésoderme viscéral, dans lequel ils définissent les spécialisations régionales [22]. Les profils d’expression chez les génomes Hox le long de l’axe rostro-caudal du système digestif suggèrent qu’il en est de même chez les vertébrés [23]. En effet, les modèles d’inactivation des gènes Hox4, Hoxa5, Hoxd12, Hoxa13 et Hoxd13 indiquent que les gènes Hox sont impliqués lors de la spécification régionale du tube digestif, leur domaine d’action respectif corrélé avec la position du gène à l’intérieur des complexes [24]. Ainsi, l’invalidation du gène Hox4 est associée à une létalité périnatale, qui est attribuée à une malformation de la couche musculaire de l’œsophage, empêchant une alimentation normale [24]. Par ailleurs, les mutations des gènes Hoxd12, Hoxa13 et Hoxd13 sont responsables d’altéra-
lations du tube digestif dans sa partie la plus distale [25, 26]. L’invalidation individuelle des gènes Hoxd12 et Hoxd13 provoque une désorganisation des couches musculaires du rectum, la mutation Hoxd13 exerçant un effet plus important. Cette désorganisation s’observe dès le début de la différenciation des couches musculaires durant le développement embryonnaire. Chez les animaux doubles mutants Hoxa13/Hoxd13, les tractus digestif et urogénital ne sont pas séparés puisque la croissance du septum urorectal, responsable de cette partition, ne se fait pas [26].

Par ailleurs, la surexpression du gène Hoxa4 induit l’apparition d’un mégacôlon, caractérisé par l’accumulation des matières fécales dans le côlon, causant ainsi le décès de l’animal avant l’âge adulte. Cette pathologie est attribuable à une dysmorphogenèse du système nerveux entérique, associée à une surproduction de molécules de signalisation dans le mésenchyme entérique, qui entraîne un élargissement de la muqueuse du côlon et une migration aberrante des progéniteurs neuronaux [27]. Il est intéressant de souligner que dans le cas de l’invalidation de Hoxa4, aucune anomalie viscérale n’a été rapportée [9]. De plus, lorsque le gène Hoxa8 est exprimé de manière ectopique dans l’estomac, il y a formation de lésions hamartomateuses correspondant à l’inclusion de muqueuse gastrique dans la couche musculaire [8]. Ce phénomène s’applique à certaines lésions du système gastro-intestinal observées chez l’homme, et qui sont parfois associées à des malformations du squelette. Ces résultats reflètent l’importance d’une régulation fine de l’expression des protéines HOX lors de l’organogenèse.

prolifération et l’apoptose cellulaire dans cet épithélium gastrique. L’épi-
thélium du côlon proximal est également atteint chez les mutants Hoxa5, les cellules caliciformes bordant l’épi-
thélium du côlon se regroupant en agrégats distribués de façon irrégulière.

Au cours de l’ontogenèse du système gastro-intestinal, l’expression de Hoxa5 est limitée au mésenchyme, comme cela est le cas dans le pou-
mon. Cette observation est en faveur de l’idée que Hoxa5 agirait comme régulateur des interactions épithélio-
mésenchymateuses lors de l’organoge-
nèse [17]. Ainsi, le domaine d’expression de TGFβ1 est clairement dans le mésenchyme gastrique en l’absence d’Hoxa5 lors de l’embryon-
èse.

Chez la drosophile, le gène Sex comb reduced (Scr), orthologue de Hoxa5, est nécessaire à la formation des caeca gastriques dans la région anté-
rièrue du tube digestif. Il est égale-
ment exprimé dans la partie poste-
rièrue du tube digestif moyen, où il jouerait un rôle dans la délamination d’une quatrième constriction [28]. Ces deux régions correspondent à des frontières fonctionnelles du tube digestif chez la drosophile. Un paral-
èle peut donc être établi quant à la con-
servation de la fonction du gène Hoxa5 dans la spécification régionale du tube digestif au cours de l’évolution. Tout comme Scr, Hoxa5 pourrait être impliqué dans la définition des zones qui séparent la région responsable des fonctions digestive, c’est-à-dire l’intestin moyen, du reste du trac
tus digestif.

Gènes Hox et morphogenèse du système urogenital

Des malformations sont observées dans le trac tus urogenital des souris déficientes pour les gènes Hox des groupes 10, 11 et 13, comme pou-
vaient le laisser penser les profils d’expression observés pour ces gènes. L’invalidation des gènes Hoxa10, Hoxa11, Hoxd11, Hoxa13 et Hoxd13 entraîne une stérilité [25, 26, 29,34]. Chez les mâles Hoxa10+/ et Hoxa11+/-, cette stérilité est due à une cryptorchidie et à une transforma-
tion hémotique partielle au niveau de la jonction de l’ovaire avec l’utérus [29, 32,33]. Quant aux femelles Hoxa10+/-, elles dévelop-
pent des kystes endométriaux et pré-
sentent une transformation homéotique de l’utérus dont la première partie devient similaire à un ovide-
ducte, expliquant la baisse de fertilité [33]. Des défauts d’implantation pourraient aussi contribuer à la sté-
rité des femelles puisque c’est possible que Hoxa10 module la réponse de la matrice utérine à la progesterone et aux œstrogènes, chez la souris comme chez la femme.

Les gènes Hoxa13 et Hoxd13 participent aussi à la morphogenèse de la région terminale du tractus génital [26, 30, 34, 35]. En effet, chez l’humain, une mutation autosomique dominante entraîne la production d’une protéine HOX13 tronquée de ses vingt derniers acides aminés, et responsable des problèmes de fertilité [36]. La sévérité du phénomène précoce chez l’homme laisse supposer que cette protéine tronquée exerce un effet dominant négatif. Chez la souris, l’introduction d’une mutation dans le gène Hoxa13 provoque une fécondité entre les jours embryonnaires 11,5 et 15,5, probablement due à une consanguinité du cordon ombilical [26]. En ce qui concerne la mutation du gène Hoxd13, seuls les mâles mutants ont une fertilité réduite, associée à une malformation de l’os pénien [30]. De plus, la ramification des ductules de la prostate, qui se produit normale-
ment durant la période postnatale, est diminuée [34]. L’analyse des doubles mutants Hoxa13+/-/Hoxd13+/- révèle l’absence du bourgeon génital. De plus, la majorité des mâles doubles mutants meurent de cause inconnue quelques semaines après la naissance, alors que les survivants sont stériles. L’analyse morphologique montre que ces mâles présentent une hypoplasie de la vésicule séminale et du corps cavernex, et perdent certaines glandes sexuelles accessoires. Si l’hypoplasie de la vésicule séminale semble due à un effet post-natal de l’invalidation génique, les autres malformations peuvent être associées à des défauts de mor-
phogenèse [34]. Une situation semblable se produit chez les femelles mutantes Hoxa13+/-/Hoxd13+/-, chez lesquelles une agénésie de la partie caudale de la cornée utérine et du col est observée. On observe également un rapprochement spatial de l’urètre et du vagin, pouvant parfois conduire à leur fusion chez les femelles les plus atteintes. De plus, chez les doubles mutants, les mâles comme les femelles souffrent d’une dilata-
tion des cavités rénales attributable à un défaut au niveau de l’entrée de l’urètre dans la vessie. Toutes ces malformations sont donc associées à des anomalies de morphogenèse qui affectent l’identité régionale du long des sinus urogénitaux, des canaux de Wolff chez les mâles, et des canaux mullériens chez les femelles [26].

Enfin, en ce qui concerne le tractus urinaire, la caractérisation des doubles mutants Hoxa11 et Hoxd11 a révélé l’importance de ces deux gènes dans la formation des reins [37]. En effet, l’absence conjointe des gènes Hoxa11 et Hoxd11 provoque des anomalies rénales allant parfois jusqu’à l’agénésie, et établis-
sant ainsi de façon précise le rôle primordial des facteurs HOX dans l’initia-
tion et le maintien des processus d’organogenèse.

Gènes Hox et développement postnatal

Alors qu’il est bien établi que les gènes Hox jouent un rôle prépondé-
rant lors de l’embryogenèse, leurs fonctions après la naissance et à l’âge adulte demeurent moins bien carac-
térisées. Plusieurs gènes Hox sont exprimés chez l’adulte selon un profil spécifique à chaque organe. Ainsi, les gènes Hox sont impliqués dans les hémopathies malignes et sont également actifs au cours de l’hémato-
poièse. L’analyse des souris déficientes pour Hoxa9 a d’ailleurs clairement établi que l’invalidation de ce gène affecte l’ontogenèse des lignées myéloïdes et lymphoïdes, suggérant un rôle des gènes Hox dans le devenir de ces lignages cellulaires [38].

L’analyse de modèles animaux déficients pour les gènes Hox a également révélé des phénomènes inattendus. Ainsi, la triple mutation des gènes Hoxa9, Hoxb9 et Hoxd9 provoque une hypoplasie de la glande mammaire, l’absence de production de lait chez les femelles, incapables de nourrir leurs petits [39]. Chez ces
femelles mutantes, alors que la morphogenèse de la glande s'effectue normalement lors de la gestation, la ramification des canaux lactifères est déficiente lors de la lactation, en raison d'une anomalie de croissance et de différenciation. Les gènes Hoxa9, Hoxb9 et Hoxd9 sont exprimés dans le mésenchyme, ce qui suggère ainsi leur participation au contrôle des interactions épithélio-mésenchymateuses [39].

À l'instar des gènes du groupe paralogue 9, Hoxc13 semble impliqué dans des fonctions autres qu'embryonnaires [40]. L'invalidation du gène Hoxc13 entraîne une diminution de la survie des animaux, seulement 10 % des individus Hoxc13−/− atteignent l'âge adulte. La cause de la mortalité n'est pas connue, mais les animaux périssent entre 7 et 14 jours après la naissance, probablement en raison d'un déficit métabolique ou nutritionnel. Au cours de l'embryogenèse, Hoxc13 s'exprime dans les follicules pilieux et dans ceux des vêtements, dans les papilles filiformes de la langue et dans les ongles. Or, chez les souris Hoxc13−/−, l'absence complète de poils, de vêtements, et de papilles filiformes de la langue constitue le phénomène le plus marquant. Il est possible que la production de protéines structurales, requises pour la formation des poils et de l'épine des papilles filiformes, soit placée sous le contrôle de Hoxc13. Il reste à définir si Hoxc13 est nécessaire à l'expression des protéines structurales ou s'agit sur la prolifération des cellules précursseurs [40].

Conclusions

L'analyse des souris déficientes pour les gènes Hox a révélé que la fonction de ces différents gènes est loin d'être limitée à la détermination des squelettes axial et appendiculaire, et qu'elle est essentielle aux processus d'organogenèse. De façon générale, au cours de l'embryogenèse, le lien de co-linearité entre la position d'un gène à l'intérieur des complexes Hox et son site d'action est respecté lors de la morphogenèse de divers organes. En ce qui concerne le développement postnatal, des études complémentaires sont nécessaires afin de définir s'il existe une relation entre l'organisation structurale des complexes Hox et l'expression dans le temps et/ou l'espace. Les mécanismes d'action des gènes Hox, ainsi que les cascades moléculaires dans lesquels ils interviennent lors de l'organogenèse sont encore mal identifiés, même si certaines données suggèrent l'existence de voies communes. L'élucidation de ces questions en suspens constitue un défi pour l'avenir.

RÉFÉRENCES

Références

Summary

The role of Hox genes during organogenesis in mammals

The Hox gene family of transcription factors plays a critical role in the hierarchy of developmental processes. Gene targeting experiments have clearly demonstrated the importance of Hox genes in the correct patterning of axial and appendicular skeletons. Moreover, Hox genes are involved in several organogenesis processes. Nearly one third of the Hox mutations result in a lethal phenotype, but in most cases, skeletal transformations cannot account for the lethality. In this article, we review the implication of Hox genes in organogenesis with a particular attention to the Hoxa5 gene.

Tidi à part

L. Jeannotte.

HÔTEL-DIEU – UNIVERSITÉ PARIS VI – INSTITUT BENJAMIN-DELESSERT
Avant-programme: 41e Journée annuelle de nutrition et de diététique
CNIT – Paris La Défense – Vendredi 26 janvier 2001

Matinée :
De l’obésité de l’enfant à l’obésité de l’adulte
Présidents modérateurs : Pr Jean NAVARRO – Pr Bernard GUY-GRAND

9h00 Introduction
9h05 Définitions actuelles et évolution de la fréquence de l’obésité chez l’enfant
9h30 L’obésité dans l’enfance à-t-elle des conséquences à l’âge adulte
9h50 Qui sont les enfants à risque de devenir des adultes obèses ?
10 h 10 Existe-t-il une génétique prédictive de l’obésité ?
10 h 30 Pause café
11 h 00 Obésité et sédentarité : de l’enfance à l’âge adulte
11 h 20 Conseil nutritionnel chez l’enfant obèse
11 h 40 Inconvénients psychologiques des régimes systématiques chez l’enfant
11 h 55 Conclusion
12 h 05 Remise du Prix Benjamin Delessert et Lecture Benjamin Delessert
Le comportement alimentaire humain : un sujet d’étude scientifique

Après-midi :
Allergies alimentaires : reconnaître, traiter, prévenir
Présidents modérateurs : Pr Arnaud BASDEVANT – Pr Bernard MESSING

14 h 30 Épidémiologie et prévalence relative des trophallergènes
15 h 00 De l’allergène à l’allergique
15 h 30 Les manifestations cliniques et la prise en charge
16 h 00 Evaluation et prévention du risque
16 h 30 Le rôle des associations : Association Française pour la Prévention des Allergies (AFPRAL)
17 h 00 Conclusion

Bernard GUY-GRAND (Paris)
Marie-Françoise ROLLAND CACHERA (Paris)
Marie-Aline CHARLES (Paris)
Maïté TAUBER et Béatrice JOUET (Toulouse)
Karine CÉLENT (Paris)
Marie-Laure FRELLT (Paris)
Dominique-Adèle CASSUTO (Paris)
Michelle LE BARZIC et Mariam POUILLO (Paris)
Jean NAVARRO et Bernard GUY-GRAND (Paris)
France BELLISLE (Paris)

Denise-Anne MONERET-VAUTRIN (Nancy)
Pascal DEMOLY (Montpellier)
Audre PRADALIER (Paris)
Jean-Michel WAL (Paris)
Zoltan ZALI (Paris)
Arnaud BASDEVANT et Bernard MESSING (Paris)

Secrétariat : 30, rue de Lübeck, 75116 Paris – Tél. : 33 1 45 53 41 69

m/s n° 1, vol. 17, janvier 2001